728x90
반응형

슈퍼컴퓨터 6

토러스(Torus) 구조

개요토러스(Torus) 구조는 병렬 컴퓨팅에서 자주 사용되는 2차원 또는 3차원 메시 네트워크의 확장형 토폴로지로, 각 노드가 양쪽 끝을 서로 연결해 도넛 형태의 폐회로를 형성하는 것이 특징입니다. 이 구조는 메시 구조의 단점인 경계 노드 병목 현상을 보완하면서도, 높은 확장성과 균일한 통신 지연 특성을 제공하여 슈퍼컴퓨터와 고성능 AI 연산 시스템에서 핵심 구조로 활용됩니다.1. 개념 및 정의토러스 구조는 전통적인 메시 구조에 **양 끝 노드를 서로 연결하는 래핑 링크(wrapping link)**를 추가함으로써 네트워크를 폐쇄된 형태로 확장한 것입니다. 2D 토러스는 가로·세로 방향에서 각각의 가장자리 노드가 연결되며, 3D 토러스는 여기에 깊이 방향까지 추가되어 입체적인 연결망을 구성합니다.2. 특..

Topic 2025.04.17

상호연결망(Interconnection Network)

개요상호연결망(Interconnection Network)은 병렬 컴퓨팅 또는 멀티프로세서 시스템에서 프로세서와 메모리, 또는 프로세서 간의 데이터를 연결하고 교환하는 통신 구조를 의미합니다. 클러스터, 슈퍼컴퓨터, GPU 네트워크, AI 연산 플랫폼 등에서 노드 간 빠르고 안정적인 데이터 전송을 위해 필수적인 구성 요소입니다.1. 개념 및 정의상호연결망은 병렬 처리 시스템 내 여러 처리 장치(노드)가 데이터를 주고받는 데 사용하는 물리적 및 논리적 통신 경로의 집합입니다. 이는 단순한 케이블 연결을 넘어서, **토폴로지(Topology), 라우팅(Routing), 스위칭(Switching)**과 같은 요소들이 복합적으로 작용하여 시스템 전체 성능에 큰 영향을 미칩니다.2. 특징 특징 설명 비고 구조..

Topic 2025.04.17

병렬처리 컴퓨팅(Parallel Computing)

개요병렬처리 컴퓨팅(Parallel Computing)은 대규모 연산 작업을 여러 개의 프로세서 또는 코어에 동시에 분산 처리하여 성능을 향상시키는 컴퓨팅 방식입니다. 과학 기술 계산, 인공지능, 그래픽 렌더링, 시뮬레이션 등 막대한 처리량이 요구되는 분야에서 핵심 기술로 자리 잡고 있으며, CPU와 GPU, 클러스터 및 클라우드 인프라까지 다양한 환경에서 적용되고 있습니다.1. 개념 및 정의병렬 컴퓨팅은 단일 작업을 여러 개의 작은 작업으로 나누어 동시에 실행하는 방식으로, 처리 시간을 줄이고 자원을 효율적으로 활용하는 것이 목적입니다. 이는 하드웨어 아키텍처와 소프트웨어 알고리즘이 유기적으로 작동해야 하며, 동기화 및 통신 비용도 함께 고려되어야 합니다.2. 특징 특징 설명 비고 다중 처리여러 프..

Topic 2025.04.17

SMP vs MPP (Shared Memory vs Massively Parallel Processing)

개요SMP(Shared Memory Processing)와 MPP(Massively Parallel Processing)는 고성능 컴퓨팅 시스템의 대표적인 병렬 아키텍처 모델입니다. 둘 다 병렬 처리 성능을 극대화하기 위한 구조지만, 메모리 접근 방식, 확장성, 처리 효율성 등에서 큰 차이를 보이며, 각각의 특성에 따라 적합한 사용 사례가 달라집니다. 본 글에서는 SMP와 MPP의 개념, 구성, 차이점 및 실제 활용 분야를 비교 분석합니다.1. 개념 및 정의SMP (Shared Memory Processing): 여러 CPU가 하나의 공유 메모리 공간을 이용하여 데이터를 동시에 접근하고 처리하는 방식MPP (Massively Parallel Processing): 각 프로세서가 독립된 메모리를 가지며, ..

Topic 2025.04.11

광학 컴퓨팅(Optical Computing)

개요광학 컴퓨팅(Optical Computing)은 전자 대신 빛(광자, Photon)을 이용하여 데이터를 처리하는 차세대 컴퓨팅 기술이다. 기존의 전자식 컴퓨팅 방식보다 속도가 빠르고, 전력 소모가 적으며, 병렬 연산이 가능하여 인공지능(AI), 빅데이터, 초고속 데이터 센터 등 다양한 분야에서 혁신적인 역할을 할 것으로 기대된다. 본 글에서는 광학 컴퓨팅의 개념, 기술적 특징, 장점과 단점, 활용 사례 및 미래 전망을 살펴본다.1. 광학 컴퓨팅(Optical Computing)이란?광학 컴퓨팅은 빛의 파장과 간섭, 회절 등의 성질을 활용하여 데이터를 연산하는 기술이다. 기존의 트랜지스터 기반 컴퓨터가 전자 신호를 사용하여 데이터를 처리하는 반면, 광학 컴퓨터는 빛을 활용하여 초고속 연산을 수행한다.✅..

Topic 2025.03.22

포스트 무어의 법칙 컴퓨팅(Post Moore's Law Computing)

개요포스트 무어의 법칙 컴퓨팅(Post Moore’s Law Computing)이란 무어의 법칙(Moore’s Law)이 한계에 도달한 이후, 컴퓨팅 성능을 지속적으로 향상시키기 위한 새로운 기술과 아키텍처를 의미한다. 기존의 실리콘 기반 트랜지스터 기술이 물리적 한계에 도달하면서, 양자 컴퓨팅, 뉴로모픽 컴퓨팅, 광학 컴퓨팅 등의 새로운 패러다임이 부상하고 있다. 본 글에서는 포스트 무어의 법칙 시대의 배경, 주요 기술, 장점과 한계, 그리고 미래 전망을 살펴본다.1. 무어의 법칙과 그 한계무어의 법칙은 **“반도체 칩의 트랜지스터 수가 약 18~24개월마다 두 배로 증가하면서 성능도 향상된다”**는 법칙이다. 하지만 최근 반도체 공정이 3nm 이하로 진입하면서 다음과 같은 한계에 직면했다.1.1 무어..

Topic 2025.03.21
728x90
반응형